

GBLIB2.EXE
A registration utility for Microsoft Visual Basic(tm) V3.0

 By Gordon.Bamber

 - Exit this Help System (or ALT+x)

New Users Guide

An Overview of GBLIB2.EXE

Complete Function Reference for GBLIB2.EXE

Obtaining a Registration Code

About GBLIB2.EXE

Function Reference for GBLIB2.EXE

Function ReadRegData

Function WriteRegData

Function MakeAKey

Subroutine ShowWinDir

Subroutine ShowSysDir

ReadRegData

Pascal Declaration

Function ReadRegData (VBEXEPath, USERNAME, USERORG YMD :Pchar; var
i_NAMELEN, i_ORGLEN :Integer) :Integer ;Export;

 Declaration

Declare Function ReadRegData Lib "GBLIB2.EXE" (ByVal sz_EXEPath As String, ByVal
sz_Name As String, ByVal sz_Org As String, YMD as String, NameLen As Integer,
OrgLen As Integer) As Integer

 Usage and notes

The function returns Zero for valid information, otherwise returns 1 for unbranded
files.

The EXEPath must be a valid compiled Visual Basic(tm) Version 3 program. It
need not be the current program, and you can use this function to read the registration
details of any branded or unbranded EXE file you like.

Note that this function does not require a registration code, as the WriteRegData
function does.

The sz_Name variable must be 33 characters (all ASCII zeros) long.
The sz_Org variable must be 41 characters (all ASCII zeros) long.
The sz_YMD variable must be 4 characters (all ASCII zeros) long.

sz_Name, sz_Org and sz_YMD would normally be initialised with the VB String$
statement thus:

Dim sz_Name as String
Dim sz_Org as String
Dim sz_YMD as String
sz_Name=String$(33,0)
sz_Org=String$(41,0)
sz_YMD=String$(4,0)
NameLen and OrgLen are DIMmed thus:

Dim NameLen as Integer
Dim OrgLen as Integer

The function may then be called.

On return, sz_Name and sz_Org are normally trimmed to length thus:

sz_Name=Left$(sz_Name,NameLen)
sz_Org=Left$(sz_Org,OrgLen)

In WriteRegData , the Users current system date was branded, along with the name
and organisation information. This was done automatically by GBLIB2.EXE.

It is returned in the 4th parameter sz_YMD.

sz_YMD is returned as 3 ASCII codes thus:

YMD(1) = ASCII code representing the Year minus 108 plus 1900 (e.g. Chr$(198) is
1990, Chr$(199) is 1991)

YMD(2) = ASCII code representing the Month (e.g. 4 would be April, 5 would be May)

YMD(3) = ASCii code representing the Date (e.g. 1 is the 1st, 2 is the 2nd)

I know that this is a bit complicated to decode, but there were good reasons for coding
the date into just 3 ASCII codes, and the REGMAX.BAS example contains VB code to
make sense of sz_YMD. (I hope)

If the file is unbranded (virgin), then:

Return value is 1

sz_Name = UNLICENSED

sz_Org = UNLICENSED

sz_YMD = 3 Spaces + Chr$(0)

Otherwise, the registration information is returned accordingly.

See.. WriteRegData

WriteRegData

Pascal Declaration

Function WriteRegData (USERNAME, USERORG, VBEXEPATH,
CODE :Pchar) :Integer; Export;

 Declaration

Declare Function WriteRegData Lib "GBLIB2.EXE" (ByVal sz_Name As String, ByVal
sz_Org As String, ByVal sz_EXEPath As String, ByVal sz_Code as String) As Integer

 Usage and notes

The function returns Zero for success, otherwise returns 1 if either sz_Name or
sz_Org had to be truncated. (they will still be written)

Note: If a bogus sz_Code is passed, then it returns 99.

The EXEPath must be a valid compiled Visual Basic(tm) Version 3 program. It
need not be the current program, and an installation program, for instance, could use
this function to brand any valid VB3-compiled EXE program.

Both sz_Name and sz_Org will be capitalised. (UPPERCASED)

sz_Name has a maximum length of 33 characters.
sz_Org has a maximum length of 33 characters.

The Current System Date is also written to the EXE file in this routine automatically by
the DLL.

sz_Code is your individual code that identifies you as a bona fide Visual Basic
developer.

Clearly, if you are using GBLIB2 to help your client brand registration information, you
would not want anyone else to be able to re-brand their own information on the file willy-
nilly.

If you wish to use GBLIB2, therefore, you must follow the procedure outlined in
APPFORM.TXT (APPFORM.BAS in the project) in order to get your own personal
sz_Code, and new, personalised copy of GBLIB2.EXE.

In the spirit of FREEWARE, you will not be charged for this service, though you must
pay your own email charges, if any are incurred.

There is no commercial element in the REGMAX project whatsoever.

See..ReadRegData

MakeAKey

Pascal Declaration

Function MakeAKey (Astring :Pchar) :LongInt ;Export;

 Declaration

Declare Function MakeAKey Lib "GBLIB2.EXE" (ByVal AString As String) As Long

 Usage and notes

This is a simple function to turn a string into (hopefully) a unique number. I am
no cryptographer, so I make no apologies for the quality of the algorithm.
Normally Astring would be composed of USERNAME & USERORG, and the result
stored in a separate file. This can then be crosschecked with the data pulled from the
EXE file if required.

ShowWinDir

Pascal Declaration

Procedure ShowWinDir ;Export;

 Declaration

Declare Sub ShowWinDir Lib "GBLIB2.EXE" ()

 Usage and notes

This routine merely puts up a message box containing the Users Windows
directory.
This, and its partner ShowSysDir can assist in telephone helpline support, where you
sometimes have to establish where the users Windows path is.

ShowSysDir

Pascal Declaration

Procedure ShowSysDir ;Export;

 Declaration

Declare Sub ShowSysDir Lib "GBLIB2.EXE" ()

 Usage and notes

This routine merely puts up a message box containing the Users Windows\
System directory.
This, and its partner ShowWinDir can assist in telephone helpline support, where you
sometimes have to establish where the users Windows\System path is.

About GBLIB2.EXE

 (or ALT+x)

Programmer G.Bamber
Help File - G.Bamber

GBLIB2.EXE (c)1994 was written in Borland Turbo Pascal for Windows(tm) V1.5
by Gordon Bamber. .

It is released as FREEWARE on the following conditions:

1) Copyright remains with the author
2) Commercial use is prohibited without registration with the author.
3) No responsibility is accepted by the author for support in its use.
4) No responsibility is accepted under any circumstances by the author for any
damage caused in its use.
5) Subject to conditions (1) to (4), you may use it in any way you please.
6) There is to be no condition (7)
8) Source code for GBLIB2.EXE is not freeware.

Gordon Bamber

Gordon Bamber is a staff programmer at Maxim Training Consultants, a Brighton-based
multimedia company.

He can be contacted:

1) email:

74437.672@compuserve.com

gbamber@cix.compulink.com.uk

2) Snailmail:

Gordon Bamber,

11, Helena road

Woodingdean,

Brighton, England

BN1 2BS

Browse Sequence

This is the start of the Browse Sequence.

Use the buttons [<<] and [>>] to move through the main topics in this help
file.

OverView of GBLIB2

1) Purpose

The purpose of GBLIB2.EXE is to self-brand a Visual Basic V3.0 compiled EXE
with registration details in such a way as to be difficult for an unscrupulous user to alter.
This is an awkward issue for commercial programmers, but GBLIB2 tries to make it as
simple and flexible as possible.

Once the EXE file is branded by GBLIB2, then even if it is copied to another computer,
the brand information will be copied with it.
This is something like the system used by Microsoft(tm) applications.

2) How does it work?

The WriteRegData routine writes an encrypted version of the registration
information into a little-used area of the compiled EXE. Because it is encrypted, it is
quite difficult for a hacker to alter. (Though not impossible) If you wish for better
security, you could include a checksum in the registration information, though this is not
built in to GBLIB2 as such.

If you will be using GBLIB2, then you would not want me to broadcast details here about
the exact areas involved, or the encryption process, so I wont.

The ReadRegData routine reads these areas, and if the EXE has not been
branded, returns the string UNLICENSED and the result code 1. Otherwise, it will
retrieve whatever was written by WriteRegData into the EXE.

3) Is is dangerous to use?

Yes, it could be - unless you know what you are doing. (That is why you are
reading this Help file, isnt it?) Do not attempt to write registration information to
EXE files compiled in anything other than Visual Basic.

It has only been written for, and tested with Microsoft(tm) Visual Basic Professional
Edition Version 3.0. That is not to say that it wont work with other flavours of VB - only

that I havnt been able to test any others. If you wish to try it - back up your data first!

A GBLIB2-branded file works identically under Windows. The registration details are
encrypted, and therefore difficult to alter/view. File-size makes no difference. (I have
branded a 2MB VB EXE with no ill-effects)

4) Can a file be unbranded?

No. But it can be re-branded as many times as you wish. The only way to
recover a virgin copy of the EXE is to recompile it with the source code in VB V3.0.

5) Have you written any other FREEWARE?

Try GBLIB1a.DLL, and SYSCOLOR.BAS. (Available on Compuserve and in
VBTIPS)

See.. Getting Started

New Users Guide to GBLIB2.EXE

GBLIB2.EXE has been designed to be powerful enough for the sophisticated
user, yet simple to use.

I suggest you look at the Overview , then the Getting Started topics.

Overview of GBLIB2

Getting Started

Getting Started

You will need to study the REGMAX.EXE source code - using Microsoft(tm)
Visual Basic V3.0 and the project REGMAX.MAK. The file REGMAX.BAS is designed
to be included in your projects, and contains all the functions necessary for normal use.

Program Structure for Normal Use. Step-By-Step

Include REGMAX.BAS in your project.

(Optional) Use the applications installation program to get the registration information
from the user, and write it to the programs INI file.

Before the main form loads, call ReadRegData . Test USERNAME for the string
UNLICENSED. If it is, then the program is unbranded.
Either Pull the information from the INI file to brand the applications EXE, using
WriteRegData . (The user need not be aware that this is happening). Display the
registration information from the EXE using ReadRegData .
Or Use a form like REGFORM to get the information from the user, and brand the EXE
then.

Thereafter, when the main form loads, it will pick up the registration information
automatically. If you have used an INI file, you can compare it with the INI file
information to check its integrity.

Remember to install GBLIB2.EXE in the applications home directory, or in the
Windows path on the host machine.

If using the EXPIRY function, install the VB3 financial DLLs as described in your Visual
Basic(tm) documentation.

Other uses and ideas.

Read/WriteRegData can be used to store any kind if string information you like.

A high-score (as a string) and High-Scorer could be stored.

A pointer (provided it is in string form) to an array or table containing progress so far
through a sequential program. (Such as an adventure game or CBT)

Embedded string version information. (Like Version Information in resource tables)

Remember:

String 1 (USERNAME) is 33 characters maximum.

String 2 (USERORG) is 33 characters maximum.

Use your imagination!

Fully enabling GBLIB2 for use.

Using APPFORM.BAS and REQUEST.BAS (supplied in the REGMAX project)
you can aquire your own personal code that will enable you to use GBLIB2.EXE to
brand any information you like.

In the spirit of FREEWARE, you cannot be charged for this service.

The security of the code thus obtained is then solely your responsibility.

To qualify, you must be a bona fide Visual Basic(tm) V3.0 developer, who intends to use
GBLIB2 in a responsible way.

The information in REQUEST.BAS is confidential, as is the Code Key. An agreement is
included to that effect in REQUEST.BAS.

There are, and will be, no commercial interests whatsoever involved in the
REGMAX/GBLIB2 project. The author is a commercial Visual Basic(tm) financial
simulation programmer with a belief in the value of distribution via freeware of new
programming ideas to other programmers, provided it does not clash with his
commercial work.

